

VALOMAG project

From the recovery of scrap magnets to the production of new magnets and rare earth oxides

Virginie Decottignies – SUEZ Group

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

EIT Raw Materials

EIT RawMaterials, initiated and funded by the EIT, a body of the European Union, is the largest consortium in the raw materials sector worldwide.

Its vision is to develop raw materials into a major strength for Europe.

Its mission is to enable sustainable competitiveness of the European minerals, metals, and materials sector along the value chain by driving innovation, education, and entrepreneurship.

General description – Main features

VALOMAG – Value of Magnets from Waste Project number: 19049 Project budget: 2 526 102 € Start date: February 2020 Project duration: 36 months Area: D2 Acceleration

Activity: D2.2 Upscaling

Strategic objective: Designing materials solutions

Thematic fields:

4- Recycling and material chain optimization for End-of-Life products

wMaterials

Enabling sustainable competitiveness of the

European minerals, metals and materials

Driving and fostering innovation along the entire raw materials value chain.

sector.

SUBSTITUTION

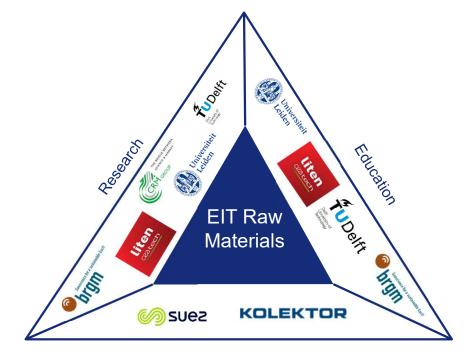
CIRCULAR ECONOMY

Outline

General description of VALOMAG project

- > Background on Critical Raw Materials
- Process chart considered in VALOMAG project

Some results on magnets from wind turbines


- > Market study on EoL wind turbines
- > Sourcing of wind turbine magnets
- Dismantling process => demagnetization
- Recycling and Recovery Routes
- > LCA Process integration and value chain analysis

Wind turbine dismantling

> SUEZ activity in France

Perspectives

Business

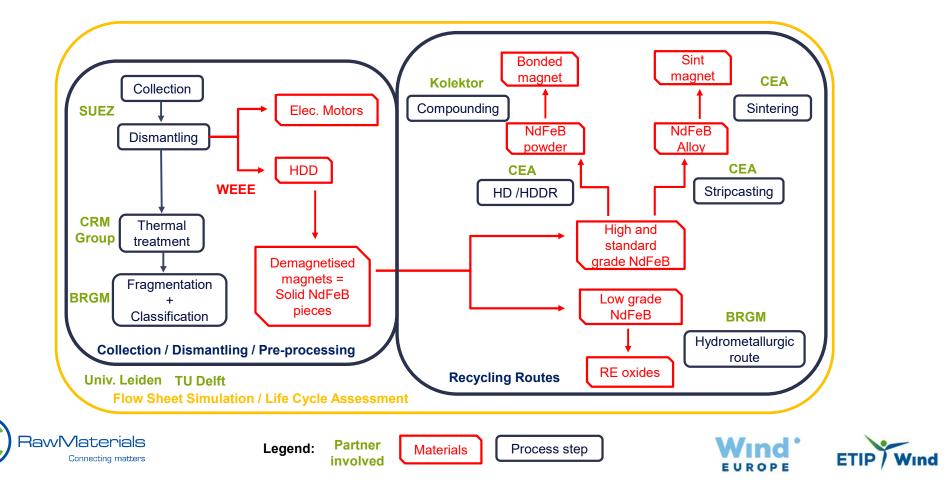
General description: Background

Market's trends Context on Critical Raw Materials (CRM)

- Increasing demand of CRM like Rare Earth Elements (REE) for clean energy applications (wind turbine)
- Increasing use of new technologies (today's technology-driven society)
- Development of cleaner ways of transport \Rightarrow electric vehicles, e-mobility

Position of Europe

- China has 95% of global REE-production (Strategic forum/ EC Input 2018) => 85 90% supply of Rare Earth (RE) in Europe
- REE considered as "strategic" materials by EU ⇒ recycling of CRM as a secondary supply to decrease the import dependence
- European Union support Innovation and Research (Strategic Forum / EC 2018) through funding of projects Prioritization of actions in EU for innovative applications
 - ⇒ Foundation of European Raw Materials Alliance ERMA with 2 clusters focusing on Rare Earth Magnets & Motors + Materials for Energy Storage and Conversion



ERMA

RAW MATERIALS

ALLIANCE

General description: Process chart considered in VALOMAG project

Market Study: Data and Hypotheses used for forecasts calculation

	Weight PM	NdFeB/PM	Lifespan	Rate collection
	(g/unit)	(%)	(years)	(%)
Wind Turbines Direct drive - mid & high speed	650 kg/MW 160 & 80kg/MW	30	25	100%

- Sources:
 - ✓ Ademe, 2020. Avis Technique Terres rares, énergies renouvelables et stockage d'énergie
 - ✓ JRC, 2017. Wind Energy Status Report 2016. Market, technology and regulatory aspects of wind energy
 - Pavel C., Lacal-Arántegui R., Marmier A., Schüler D., Tzimas E., Buchert M., Jenseit W., Blagoeva D., 2017, Substitution strategies for reducing the use of rare earths in wind turbines. 52 (2017) 349-357
 - Reimer M.V., Schenk-Mathes H.Y., Hoffmann M.F. and Elwert T., 2018 Recycling Decisions in 2020, 2030, and 2040—When Can Substantial NdFeB Extraction be Expected in the EU? Metals 2018, 8, 867 (doi:10.3390/met8110867)

Estimation of EoL Permanent Magnets used in on & offshore WT in Europe from 2025 to 2044 – from already installed capacities (GW)

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Offshore (GW)	0,004	0,05	0,17	0,25	0,1	0,08	0,9	0,32	0,35	0,60
Onshore (GW)			33,5		6,5	7,1	8,6	8,1	10	
Total usable (GW)	0,004	0,05	0,17	0,25	0,10	0,08	0,90	8,92	8,45	10,6
Single data available.										
Oligie data available.	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Offshore (GW)	0,9	0,8	1,2	1,5	1,5	3,0	1,6	3,2	2,7	3,6
Onshore (GW)	9,6	9,5	11,7	11	11	10	12,3	13,9	9,4	11,7
Total usable (GW)	10,5	10,3	12,9	12,5	12,5	13,0	13,9	17,1	12,1	15,3

Typology of permanent magnet generators	2015	2020	2030	Mass of permanent magnets
Low speed or direct drive (DD)	19%	29%	44%	650 kg/MW
Mid speed	4%	12%	28%	160 kg/MW
High speed	470	12.70	20%	80 kg/MW

	By 2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
Total usable (GW)	0,005	0,05	0,17	0,25	0,10	0,08	0,9	8,9	8,5	10,6	
	-		_		_						
	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	
Total usable (GW)	10,5	10,3	12,9	12,5	12,5	13,0	13,9	17,1	12,1	15,3	
									X 128	,3 kg Pl	M/N
	By 2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	
PM Mass (Tons)	1	6	22	32	13	10	115	1 144	1 084	1 360	7
											ę
	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	
PM Mass (Tons)	1 3 4 7	1 321	1 655	1 604	1 604	1 668	1 783	2 194	1 552	1 963	

https://www.engineering.com/story/the-future-of-wind-turbines-comparing-direct-drive-and-gearbox **EUROPE FIP/WING** Direct drive wind turbine testing at the world's largest wind turbine drive chain testing facility at Clemson University (Image courtesy of the Clemson University)

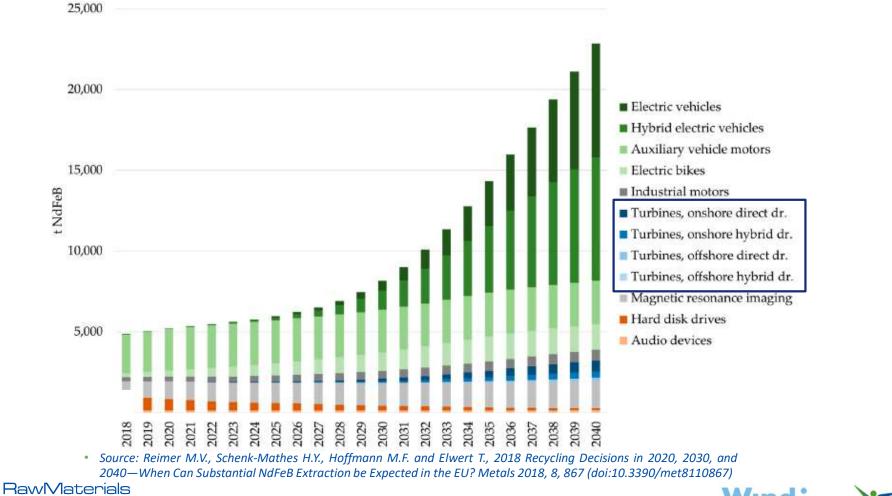
Estimation of EoL Permanent Magnets used in on & offshore WT in Europe from 2045 to 2055

Expectations	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Total usable (GW) 48GW (offshore) + 70GW (onshore) (i.e. 10.72 GW per year on average)											

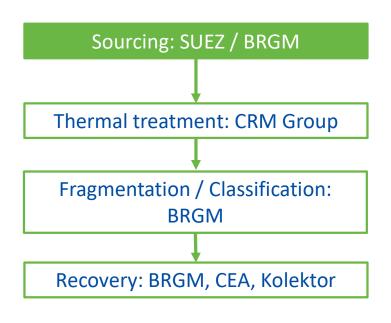
=> Additional wind power capacities (GW) expected to be installed between 2020 and 2030

Typology of permanent magnet generators	2015	2020	2030	Mass of permanent magnets
Low speed or direct drive (DD)	19%	29%	44%	650 kg/MW
Mid speed	4%	12%	28%	160 kg/MW
High speed	4%	1270	20%	80 kg/MW

Expectations	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2045-2055	
Total usable (GW)		48GW	(offshore) + 70G	W (onsho	ore) (i.e.	10.72 G	W per y	ear on a	verage)		<u>118</u>	
X 202,9 k											02,9 kg/	'MW	
Expectations	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2045-2055	1
PM Mass (Tons)	2 177	2 177	2 177	2 177	2 177	2 177	2 177	2 177	2 177	2 177	2 177	<u>23 942</u>	


https://www.engineering.com/story/the-future-of-wind-turbines-comparing-direct-drive-and-gearbox

Direct drive wind turbine testing at the world's largest wind turbine drive chain testing facility at Clemson University (Image courtesy of the Clemson University)

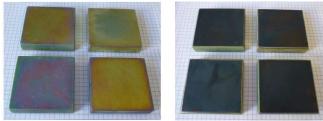

Forecasts of return flows from 2020 to 2040 in Europe

Connecting matters

ETIP Wind

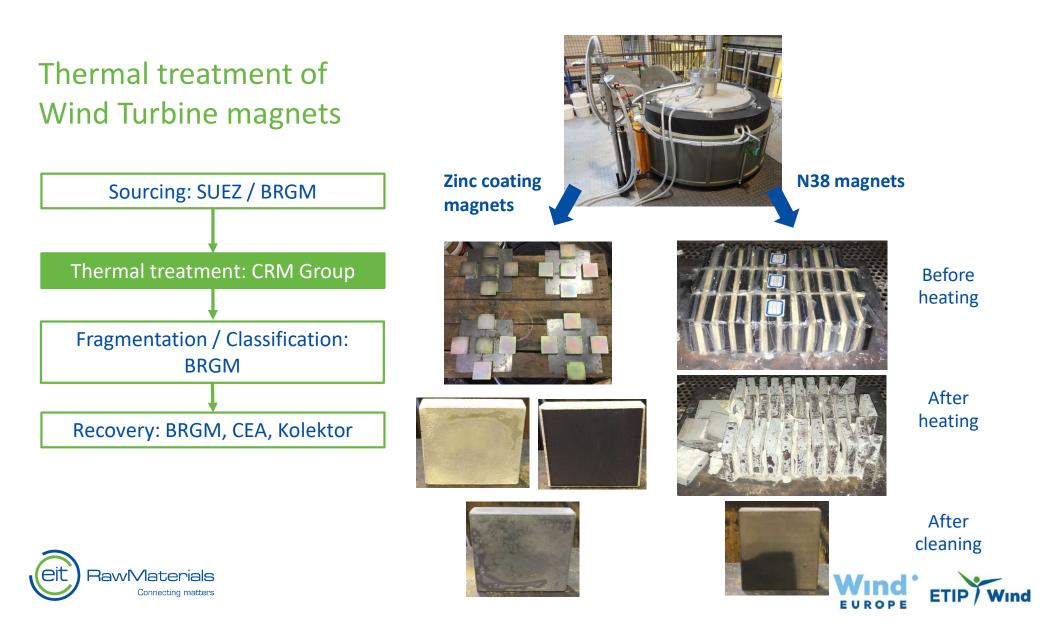
Sourcing of EoL products => magnets from wind turbines

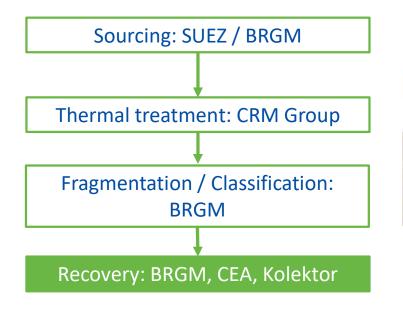
980kg Wind Turbines' magnets sourced by BRGM and provided by Net Wind company in France



Definition of the second secon

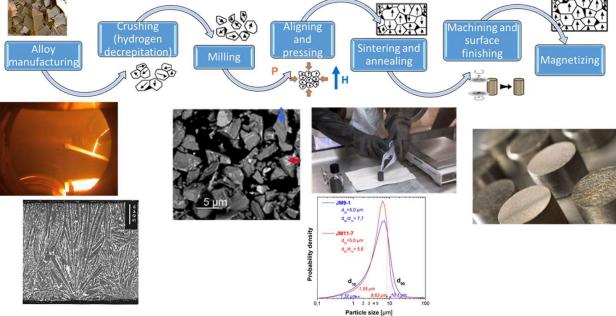
2 types: with and without Zn coating


Net



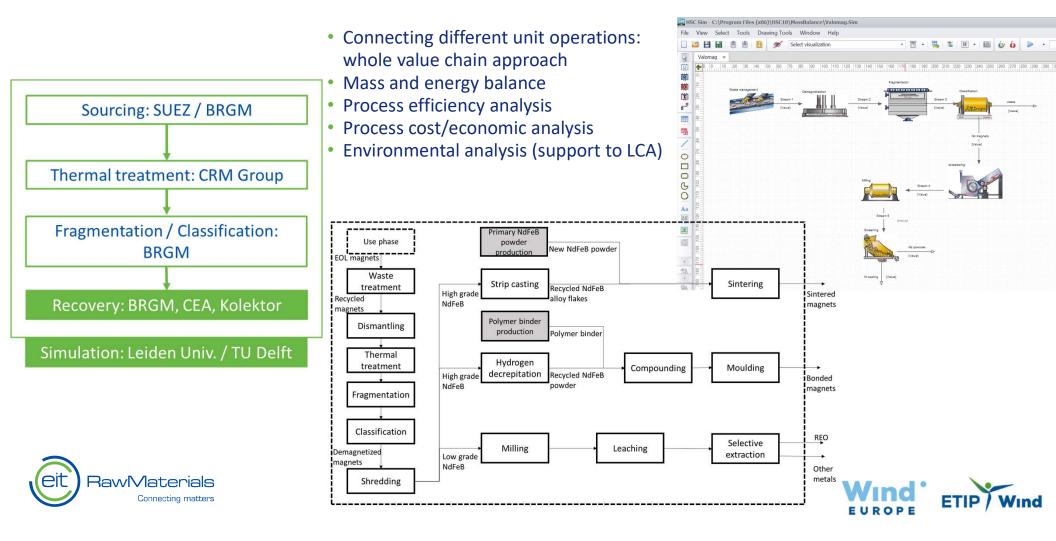
ETIP / Wind

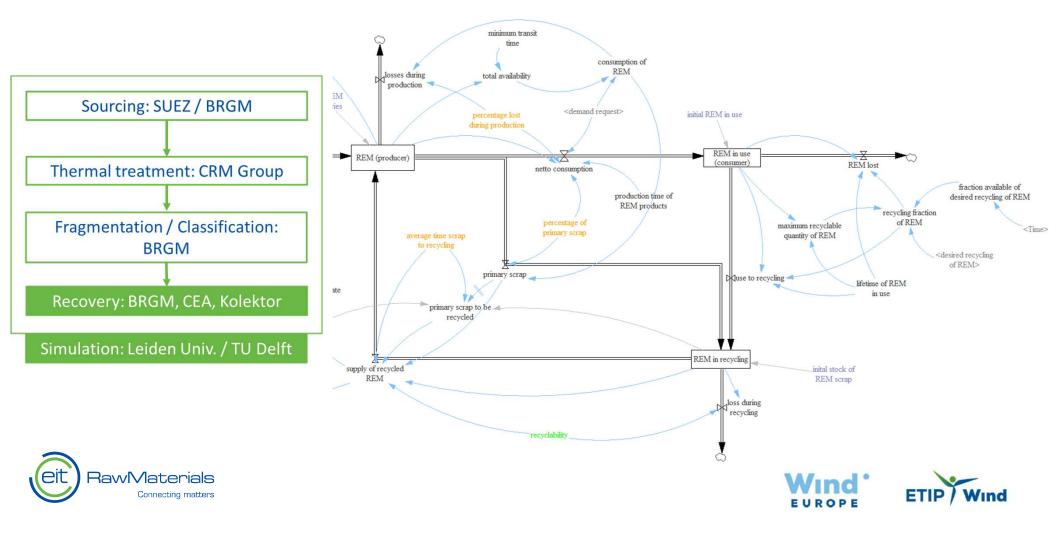
Connecting matters


Recovery and Recycling Routes

RawMaterials

Connecting matters


From raw materials to functional magnets


Short Loop Recycling with CEA and Kolektor

LCA - Process integration and value chain analysis

Assessing impact on critical material supply dependency

Perspectives

- Characterization of the scrap magnets from the different sources to assess their quality and their variability
- Implementation of :
 - ✓ the 2 short loop recycling routes at CEA and KOLEKTOR for sintered and bonded magnets
 - ✓ the hydrometallurgical route at BRGM for recovery of REE oxides
- Set up of the LCA and Process integration for the 3 routes

Wind Turbines Dismantling activities in SUEZ

Objectives:

- To maintain and increase the recovery and the recycling of materials from Wind Turbines
- To choose the most valuable recycling routes
- To answer the needs of different recycling value chains in EU

ETIP / Wind

https://www.youtube.com/watch?v=6gfoyf6C_4I

RECYCLING TURNING WASTE INTO VALUABLE RESOURCES

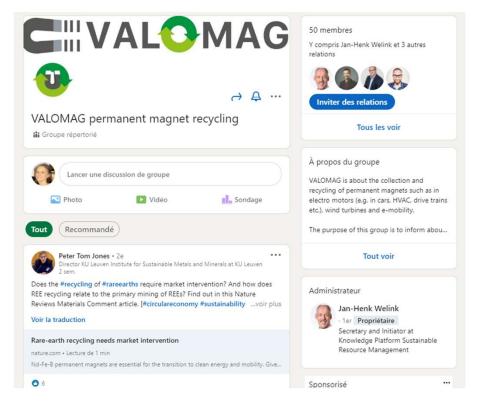
Re-Thinking Recycling: New Processes, New Business Models, Attracting Talents

EIT RawMaterials is supported by the EIT, a body of the European Union

Thank you for your attention

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

To follow VALOMAG project


- Project Website

https://valomag.tudelft.nl/

- LinkedIn Group

https://www.linkedin.com/groups/12500202/

